SUPPLEMENTAL ANALYSIS FOR:
 MEI YOUNG SITE: 8251 WEST MERCER WAY MERCER ISLAND, WA 98040

DATE:	PLAN NUMBER:	PHILLIPS STRUCTURAL ENGINEERING, PLLC	
OCT. 30, 2018	WEN HU RESIDENCE		
		P.O. BOX 108, MILTON, WA 98354 Phone (253) 344-1666	

The enclosed documents are to be used in conjunction with the plans referenced on the cover page. It is imperative that the contractor study and understand the engineering requirements and required changes to the architectural plan prior to start of work. Modifications may include additional foundations or footings, beam size changes, sheathing changes etc.

Scope of Engineering: Engineering analysis and design to resist lateral and gravity loads in accordance with the 2015 IBC have been performed and incorporated into stamped " S " sheets. All analyses and calculations are included in this engineering report (see $8 \frac{1}{2} \times 11$ pages). Engineering assumptions are listed below. If the conditions listed below are not present at the site, all calculations and stamped drawings are void and Phillips Structural Engineering must be contacted immediately.

LOADING CRITERIA

Building Code 2015 International Building Code (IBC)
Seismic Design Catagory (SDC) D
Ss (Short Period) $\quad 1.47$
S1 (1 Second Period) $\quad 0.56$
Response Mod. Coeff. (R) 6.5
Seismic Site Class
D
Basic Wind Speed (3 Sec) 110 MPH Exposure C
LIVE LOADS (psf) U.N.O.
-Uninhabitable attics without storage 10
-Uninhabitable attics with storage 20
-Habitable attics and sleeping areas 30
-Deck Framing 60
-All other areas 40
DEAD LOADS (psf) U.N.O.
-Roof with composition roofing 20
-Floor 15
SNOW LOADS (psf) U.N.O.
-Flat Roof Snow (Reduced from Ground) 30

SOILS CRITERIA

Soils Consultant
PanGEO
Soils Report \# 17-405
Allowable Pressure Req'd
Frost Bearing Depth

3000 psf (Verify w/ Site Conditions) 18"

Phillips Structural Engineering, PLLC
Project \qquad WEN HM wes tia

C(H)MNGH

(29.51)

$$
A_{f}=4^{\prime} \times 7.5^{\circ}
$$

$$
=30 \phi
$$

$$
h / D=25 / 2.5=10 \therefore C_{f}=1.2
$$

$$
\left(z=30^{\circ}\right) q_{z}=0.02250 K_{z} K_{z t} K_{d} \gamma^{\prime}
$$

$$
\begin{aligned}
& K_{z}=0.98 \\
& K_{z+}=1.0 \\
& K_{d}=0.9 \\
& V=110
\end{aligned}
$$

$$
M_{. \operatorname{Th}}=7.5 / 2^{2} \times 502^{4}=1881^{177}
$$

$$
q_{z}=27.3 \mathrm{pst}
$$

$$
\begin{aligned}
& F_{h}=q_{z}\left(G C_{f}\right) A_{F} \\
& G=0.85 \\
& F_{h}=27.3(.85)(1.2)(30, \phi) \\
& =876^{* *} \text { (APMLO O MIO iTN) } \\
& \text { (Soz*A50) }
\end{aligned}
$$

Level3 3ol 3

 LIN5 $4.3 \quad 8 L F \times\left(1592 \times Q^{\prime}\right)+12$ MF $]=192 * * \times_{1} 61152^{*}$

Bou - $1152^{*}=140^{4} \perp$ waus RBijt
\therefore no Star needed
LINE 6.1 QLF $\times\left(\left(15 \times 15^{\circ}\right)+901 / F\right)=2520^{\circ} \times .6=1512^{\circ} \mathrm{J}$
LINE 9-1
Segmented Perlorated

$$
6 L F \times[(15 \times 6)+G O N E]=1080 \# \times .6=648^{4}
$$

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

R1
PSL, 2.0E, 2900Fb, 3-1/2"x14'
Supports: All - Timber-soft Beam, D. Fir-L No. 2
total length: 8.29^{\prime}. Clear span: 8^{\prime}; volume $=2.8 \mathrm{cu} . \mathrm{ft}$
Lateral support: top= full, bottom= at supports;
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=79$	$\mathrm{FV}^{\prime}=334$	psi	$\mathrm{fv} / \mathrm{Fv}{ }^{\prime}=0.24$
Bending (t)	$\mathrm{fb}=797$	$\mathrm{Fb}^{\prime}=3335$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.24$
Live Defl'n	$0.03=<L / 999$	$0.27=\mathrm{L} / 360$	in	0.12
Total Defl'n	$0.07=<L / 999$	$0.41=\mathrm{L} / 240$	in	0.17

Additional Data:												
factors:	F/E	(psi) CD	CM	Ct	CL	cV	Cfu	Cr	Cfrt	Ci	Cn	LC
Fv'	290	1.15	-	1.00	-	-	-	-	1.00	-	1.00	2
$\mathrm{Fb}{ }^{+}$	2900	1.15	-	1.00	1.000	1.00	-	1.00	1.00	-	-	
Fcp '	625	-	-	1.00	-	-	-	-	1.00	-	-	
E'	2.0	million	-	1.00	-	-	-	-	1.00	-	-	
Eminy '	1.04	million	-	1.00	-	-	-	-	1.00	-	-	
CRITICAL LOAD COMBINATIONS:												
Shear : LC \#2 = D+S, V max ${ }^{\text {a }} 3727$, V design $=2593 \mathrm{lbs}$												
Deflection: LC \#2 = D+S (live)												
		\#2 =	S	tal)								
$\mathrm{D}=$ dead L=live $\mathrm{S}=$ snow W=wind $\mathrm{I}=$ impact $\mathrm{Lr}=$ roof live Lc=concentrated E=earthquake												
All LC's are listed in the Analysis output												
Load com	inati	ons: AS	7-1	/ IBC								
CALCULATIONS:												
Deflection: EI $=1601 \mathrm{e} 06 \mathrm{lb}$-in2												
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)												
Total Deflection $=1.50$ (Dead Load Deflection) + Live Load Deflection.												

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application
3. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer
4. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor
5. FIRE RATING: LVL, PSL and LSL are not rated for fire endurance.

Maximum Reactions (Ibs), Bearing Capacities (lbs) and Bearing Lengths (in) :

Design Check Calculation Sheet
WoodWorks Sizer 11.1

Loads:

Load	Type	Distribution	$\begin{array}{\|l\|} \hline \text { Pat- } \\ \text { tern } \\ \hline \end{array}$	$\begin{array}{cc} \hline \text { Location } & \text { [ft] } \\ \text { Start } & \text { End } \\ \hline \end{array}$	Magnitude Start End	Unit
Load1	Dead	Full Area			20.00 (2.00')	psf
Load2	Snow	Full Area			30.00 (2.00')	psf
Load3	Dead	Point		2.54	314	lbs
Load4	Snow	Point		2.54	428	lbs
Load5	Dead	Point		5.29	2312	lbs
Load6	Snow	Point		5.29	3303	lbs
Self-weight	Dead	Full UDL			15.3	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

Additional Data:

factors :	F/E	(psi) CD	CM	Ct	CL	cv	Cfu	Cr	Cfrt	Ci	Cn	LC\#
Fv'	290	1.15	-	1.00			-		1.00	-	1.00	2
Fb'+	2900	1.15	-	1.00	1.000	1.00	-	1.00	1.00	-	-	2
Fcp'	625	-	-	1.00	-	-	-	-	1.00	-	-	-
E^{\prime}	2.0	million	-	1.00	-	-	-	-	1.00	-	-	2
Eminy '	1.04	million	-	1.00	-	-	-	-	1.00	-	-	2
CRITICAL LOAD COMBINATIONS:												
Deflection: LC \#2 = D + S (live)												
$D=$ dead L=live $S=$ snow $W=$ wind $\mathrm{I}=$ impact $\mathrm{Lr}=$ roof live $\mathrm{LC}=$ concentrated $\mathrm{E}=$ earthquake												
All LC's are listed in the Analysis output												
Load combinations: ASCE 7-10 / IBC 2015CALCULATIONS:												
Deflection: EI $=1601 \mathrm{e} 06 \mathrm{lb}-\mathrm{in} 2$												
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)												
Total Deflection $=1.50$ (Dead Load Deflection) + Live Load Deflection.												

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application,
3. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer.
4. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor.
5. FIRE RATING: LVL, PSL and LSL are not rated for fire endurance.

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

Maximum reaction on at least one support is from a different load combination than the critical one for bearing design, shown here, due to Kd factor. See Analysis results for reaction from critical load combination.

					R4 PSL, 2.0E, 2900Fb, 3-1/2"x14" Supports: All - Timber-soft Beam, D.Fir-L No. 2 Total length: 13.87^{\prime}; Clear span: $2.5{ }^{\prime}, 11^{\prime}$; volume $=4.7$ cu.ft. Lateral support: top= full, bottom= at supports;
Analysis vs. Allowable Stress and Deflection using nds 2015 :					
Criterion	Analysis Value	Design Value	Unit	Analysis/Design	
Shear ($\mathrm{fv}=105$ $\mathrm{fb}=1124$		¢ ${ }_{\text {psi }}^{\text {psi }}$	$\begin{aligned} & \mathrm{fv} / \mathrm{FV} \mathrm{~V}^{\prime}=0.31 \\ & \mathrm{fb} / \mathrm{Fb},=0.34 \end{aligned}$	
Bending (-)	$\mathrm{fb}=264$	$\mathrm{Fb}^{\prime}=3043$	psi	${\mathrm{fb} / \mathrm{Fb}^{\prime}=0.09}$	
Interior Live	$0.09=<L / 999$	$0.37=\mathrm{L} / 360$	in	0.24	
Cantil Total	$0.18=\mathrm{L} / 758$	$0.56=\mathrm{L} / 240$	in	0.32	
Cantil. ${ }_{\text {L }}^{\text {Live }}$ Total	-0.06 $=\mathrm{L} / 502$ $-0.12=\mathrm{L} / 264$	$0.17=\mathrm{L} / 180$ $0.26=\mathrm{L} / 120$	in	0.36 0.45	

Additional Data:

facto	F/E				CL	cV		Cr				
Fv^{\prime}	290	1.15	-	1.00					1.0			
Fb'+	2900	1.15		1.00	1.000	1.00	-	1.00	1.00			
$\mathrm{Fb}^{\prime}-$	2900	1.15	-	1.00	0.912	1.00	-	1.00	1.00		-	
Fcp'	625		-	1.00			-		1.00	-	-	
E'	2.0	1ion	-	. 00			-		1.			
Eminy '	1.04	million	-	1.00								
CRITICAL LOAD COMBINATIONS:												
Shear : LC \#2 = D + , V max $=4365, \mathrm{~V}$ design $=3424$												
Bending(t) : LC \#4 = D + (pattern: ss), $M=10705 \mathrm{lb}$												
Bending(-): LC \#2 = D+s, M = 2518 lbs												
$D=$ dead $L=1$ ive $S=$ snow $W=w i n d$ I=impact $L r=r o o f$ live $L c=c o n c e n t r a t e d ~ E=e a r t h q u a k e ~$ All LC's are listed in the Analysis output												
CALCULATIONS:												
Deflection: EI $=1601 \mathrm{e} 06 \mathrm{lb-in} 2$												
"Live" deflection = Deflection from all non-dead loads (1ive, wind, snow..)												

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor.
4. The critical deflection value has been determined using maximum back-span deflection. Cantilever deflections do not govern design.

Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Additional Data:

```
Maccllllllll
ERITICAL LOAD COMBINATIONS:
CRITICALLOAD COMBINATIONS: 
Deflection: LC #2 = D+S (live)
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
O=dea, L=1/ve S=snow in the Analysis output
l
CALCULATIONS: 
"Live" deflection = Deflection from al1 non-dead loads (1ive, wind, snow..)
```


Design Notes:
. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Speeification (NDS 2015), and NDS Design Supplement.
Please verify that the defaut deflection limits are appropriate for your application.
3. Gilulam design values are for materials conforming to ANSI 1117-2015 and manufactured in accordance with ANSI A190.1-2012
4. GLULAM: bxd = actual breadth xactual depth.
5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.

R7
Lumber-soft, D.Fir-L, No.2, 4x10 (3-1/2"x9-1/4")
Supports: All - Timber-soft Beam, D.Fir-LNo. 2
Total length. 8.18 , Clear span. 8.0; volume $=1.8$ cu.ft
Lateral support: top= at supports, bottom= at supports;
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=161$	$\mathrm{Fv}=207$	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.78$
Bending (+)	$\mathrm{fb}=1037$	$\mathrm{Fb}=1222$	psi	$\mathrm{fb} / \mathrm{Fb}{ }^{\prime}=0.85$
Live Defl' n	$0.06=<\mathrm{L} / 999$	$0.27=\mathrm{L} / 360$	in	0.23
Total Defl' n	$0.13=\mathrm{L} / 762$	$0.40=\mathrm{L} / 240$	in	0.31

Additional Data:

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

SF2
Glulam-Unbal., West Species, 24F-V4 DF, 5-1/2"x12"
8 laminations, $5-1 / 2^{\prime \prime}$ maximum width,
supports: All - Timber-soft Beam, D.Fir-L No.
otal length: 12.29 ; Clear span: 12 , volume $=5.6$ cu.ft
Lateral support: top= at supports, bottom= at supports;
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv $=106$	$\mathrm{Fv} \mathrm{V}^{\prime}=265$	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.40$
Bending (+)	$\mathrm{fb}=1568$	$\mathrm{Fb}{ }^{\prime}=2360$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.66$
Live Defl' n	$0.27=\mathrm{L} / 546$	$0.40=\mathrm{L} / 360$	in	0.66
Total Defl n	$0.39=\mathrm{L} / 370$	$0.61=\mathrm{L} / 240$	in	0.65

Additional Data:

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement
2. Please verify that the default deflection limits are appropriate for your application.
3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
4. GLULAM: bxd $=$ actual breadth \times actual depth.
5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n)

Analysis vs. Allowable Stress and Deflection using NDS 2015 :
Criterion

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=77$		psi	${\mathrm{fv} / \mathrm{Fv}^{\prime}}^{\prime}=0.29$
Bending (+) Bending (-)	$\mathrm{fb}=829$	$\mathrm{Fb}^{\prime}=2400$	psi	$\mathrm{fb} / \mathrm{Fb}$ ' $=0.35$
Bending (-)	$\mathrm{fb}=1019$	$\mathrm{Fb}^{\prime}=2361$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.43$
Deflection: Interior Live	$0.19=\mathrm{L} / 868$	$0.45=\mathrm{L} / 360$	in	0.41
Total	$0.22=\mathrm{L} / 751$	$0.68=\mathrm{L} / 240$	in	0.32
Cantil. Live	$0.47=\mathrm{L} / 180$	$0.47=\mathrm{L} / 180$	in	1.00
Total	$0.54=\mathrm{L} / 157$	$0.71=\mathrm{L} / 120$	in	0.76

Additional Data

```
laccllllllll
RITICAL LOAD COMBINATIONS: 
Shear (t): LC #2 = D+L, V max = 3864, V design = 3380
```



```
peflection: LC #C #12 = (total)
D=dead L=1ive S=snow }\textrm{W=wind
lol
S=S/2, X=L+S or L+Lr, 
LoadCULATIONS
*)
M,
```


Design Notes:

1. WoodWOrks analysis and design are in accordance with the ICC International Build
2. Please verify that the default deflection limits are approppriat for your application.

Glulam design val
Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
GLULAM: bxd = actual breadth \times actual depth.
Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3
7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

The critical deflection value has been determined using maximum back-span deflection. Cantilever deflections do not govern design

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

SF5

Glulam-Unbal., West Species, 24F-V4 DF, 5-1/2"x12
8 laminations, $5-1 / 2^{\prime \prime}$ maximum widh,
Total length: $11.34^{\prime} ;$ Clear span: 1^{\prime} ', volume $=5.2$ cu
Lateral support: top= at supports, bottom= at supports;

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. WoodW orks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design S
3. Please verify that the defautl deffection limits are appropiate for your application.
4. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
5. GLLLAM: : xxd = actual breatht x actual depth.
6. Glulam Beams shal be laterally supported according to the provisions of NDS Clause 3.3.3.
7. GLulam Beams shall be laterally supported according to the provisions of
8.

SF6

SF7
Glulam-Unbal., West Species, 24F-V4 DF, 3-1/2"x18
12 laminations, $3-1 / 2^{\prime \prime}$ maximum width,
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Total length: 21.51'; Clear span: 21.25^{\prime}; volume $=9.4$ cu.ft.
Lateral support: top= full, bottom= at supports;
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=98$	$\mathrm{Fv}=305$	psi	$\mathrm{fv} / \mathrm{Fv}{ }^{\prime}=0.32$
Bending (+)	$\mathrm{fb}=2162$	$\mathrm{Fb}=2748$	psi	$\mathrm{fb} / \mathrm{Fb}{ }^{\prime}=0.79$
Live Defl n	$0.40=\mathrm{L} / 638$	$0.71=\mathrm{L} / 360$	in	0.56
Total Defl' n	$0.91=\mathrm{L} / 283$	$1.07=\mathrm{L} / 240$	in	0.85

Additional Data:

FACTORS:	F/E	(psi) CD	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	$\mathrm{Cn} * \mathrm{Cvr}$	C\#
Fv'	265	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	4
Fb'+	2400	1.15	1.00	1.00	1.000	0.996	1.00	1.00	1.00	1.00		4
Fcp ${ }^{\prime}$	650	O	1.00	1.00		-		-	1.00	-	-	-
E'	1.8	million	1.00	1.00	-	-	-	-	1.00	-	-	4
Eminy '	0.85	million	1.00	1.00	-	-	-	-	1.00	-	-	4
CRITICAL LOAD COMBINATIONS:												
Shear												
Deflection: $\begin{aligned} & \text { LC \#4 } \\ & \text { LC \#4 }\end{aligned}$												
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake												
Load com	mbinati	ions: ASC	E 7-10	/ IBC								
CALCULATIONS:												
Deflection: EI $=3062 \mathrm{e} 06 \mathrm{lb-in} 2$												
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)												
Total Deflection $=1.50$ (Dead Load Deflection) + Live Load Deflection.												

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application
2. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
3. GLULAM: bxd = actual breadth \times actual depth.
4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

Analysis vs. Allowable Stress and Deflection using NDS 2015:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}^{\text {¢ }}$ - 48	$\mathrm{FV}^{\prime}{ }^{\text {a }}$ = 172	psi	${\mathrm{fv} / \mathrm{Fv}^{\prime}=0.28}^{\text {c }}$
Bending (+)	${ }_{f 6}^{\mathrm{fb}}=9{ }^{\text {b }}$	$\mathrm{Fb}^{\prime}=1349$	${ }^{\text {psi }}$	$\mathrm{fb} / \mathrm{Fb}_{\mathrm{fb}} \mathrm{fb}^{\prime}=0.01$
Bending (-)	$\mathrm{fb}=994$	$\mathrm{Fb}^{\prime}=1147$	psi	$\mathrm{fb} / \mathrm{Fb}{ }^{\prime}=0.87$
Interior Live	-0.03 $=$ <L/999	$0.27=\mathrm{L} / 240$	in	0.10
Total	$-0.05=<L / 999$	$0.35=\mathrm{L} / 180$	in	0.14
Cantil. Live	$0.30=\mathrm{L} / 228$	$0.56=\mathrm{L} / 120$	in	0.53
Total	$0.59=$ L/113	$0.75=\mathrm{L} / 90$	in	0.79

Additional Data:

Design Notes

and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplemert
2. Please verify that the default deflection limits are appropriate for your application. 3. Continuous or Cantilevered Beams: NDS Clause 4.2 .5 .5 requires that normal grading provisions be extended to the middle $2 / 3$ of 2 span beams and to the full length of cantilevers and other spans.
4. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.
5. The critical deflection value has been determined using maximum back-span deflection. Cantilever deflections do not govern design.

SF11
Glulam-Unbal., West Species, 24F-V4 DF, 3-1/2"x9"
6 laminations, $3-1 /$ /2" 2 maximum width,
Total length: $7.56^{\prime} ;$ Clear span: $7.25^{\prime \prime}$; volume $=1.7$ cu.
Lateral support: top= at supports, bottom= at supports;

Additional Data:

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement

Please verify that the defautt deflection limits are appropriate for your application.
Gilulam design
4. GLULAM: bxd $=$ actual breadth \times actual depth.
6. GLULAM: bearing length based on smaller of F Fp(tension). F cpp(comp'n)

SF14
Glulam-Unbal., West Species, 24F-V4 DF, 5-1/2"x18"
12 laminations, 5 -1/2" maximum width,
Supports: All - Timber-soft Beam, D. Fir-L No. 2
Ootal length: 11.38^{\prime}; Clear span: 11 '; volume $=7.8$ cu.ft
Lateral support: top= at supports, bottom $=$ at supports;

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
. Please verify that the default deflection lim
2. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
3. GLULAM: $b \times d=$ actual breadth \times actual depth.
4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

							SF15 Oct. 18, 2019 13:01
Design Check Calculation Sheet WoodW orks Sizer 11.1							
Loads:							
Load	Type	Distribution	$\begin{array}{\|l\|} \hline \text { Pat- } \\ \text { tern } \\ \hline \end{array}$	$\begin{array}{cc} \hline \text { Location }[\mathrm{ft}] \\ \text { Start } & \text { End } \\ \hline \end{array}$	$\begin{aligned} & \text { Magnitude } \\ & \text { Start } \quad \text { End } \end{aligned}$	Unit	
Lill	Dead	Full All Area			${ }^{90.0} 15.00(0.67$)	${ }_{\text {psf }}^{\text {plf }}$	
Load3	Live	Ful1 Area			${ }_{40} 0.00(0.67$)	psf	
Load4	Dead	Full Area			20.00 (1.00)	psf	
(${ }_{\text {Load5 }}^{\text {Load6 }}$	(eat $\begin{aligned} & \text { Snow } \\ & \text { Dead }\end{aligned}$	${ }_{\text {Point }}^{\text {Full }}$		2.24	${ }_{3}^{30.00(1.00)}{ }^{3} 40$	$\xrightarrow{\text { psf }}$	
Load7	Live	Point		2.24	4310	1bs	
Load8	${ }_{\text {Snow }}^{\text {Snowd }}$	${ }^{\text {Point }}$		2.24 3.41 3	893 1430	${ }^{1 \mathrm{lbs}}$	
Load10		${ }^{\text {Pa }}$		${ }_{3.41}^{3.41}$	1430 2095	$\xrightarrow{\text { lbs }}$	
退 $\begin{aligned} & \text { Load11 } \\ & \text { Load12 }\end{aligned}$	Earthquake	${ }_{\text {Point }}^{\text {Point }}$		3.41 8.91	8253 -8253	1bs 1bs	
Self-weight	Dead	Ful1 UDL			13.3	plf	

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

SF15
Glulam-Unbal., West Species, 24F-V4 DF, 5-1/2" $\times 10-1 / \mathbf{2 "}^{\prime \prime}$ 7 laminations, 5 -1/2" maximum width,
Tota Leral support: top $=$ at span: 10°; volume $=4.1$ cu.ft
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Additional Data

Design Notes

(NDS 2015), and NDS Design Suppleme
Please verify that
3. GLULAM: bxd $=$ actual breadth \times actual depth.
4.
5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3
6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

SF16
Glulam-Unbal., West Species, 24F-V4 DF, 5-1/2"x18
12 laminations, $5-1 / 22^{2}$ maximum width,
Total length: 16.94 :'; Clear span: 16.292 ;'; volume $=11.6$ cu.ft.
Lateral support: top $=$ at suppors,
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Additional Data:

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement
2. Please verify that the defautt deflection limits are appropriate for your application.
3. Please veris that the defautit defection limits are appropriate for your appication.
4. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-201
5. GLU AM: bxd = actual breadth x actual deth
6. GLULAM: bxd $=$ actual breadth \times actual depth.
5lulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
7. GLULAM: bearing length based on smaller of $\operatorname{Fcp}($ tension). Fcp(comp'n)

Glulam-Unbal., West Species, 24F-V4 DF, 3-1/2"x18"

Analysis vs. Allowable Stress and Deflection using NDS 2015:

Additional Data:

Additional Data:																						
factors: f/e (psi) CD					${ }_{\text {CL }}$		$\stackrel{\text { cfu }}{\text { - }}$			$\begin{gathered} \text { Notes } \\ 1.00 \end{gathered}$	$\mathrm{Cn}_{\substack{ \\1.00}}$	${ }_{8}^{\text {LC\# }}$										
Fv^{\prime}	265	1.60																				
${ }^{\mathrm{Fb}}$ '+	2400	1.60	1.00	1.00	1.000	1.000	1.00	1.00	1.00	1.00		8										
Fcp^{\prime}	650		1.00	1.00	-	-			1.00		-											
	1.8	1ion	1.00	1.00	-	-	-	-	1.00	-	-	5										
Eminy '	0.85	1ion	1.00	1.00		-			00	-	-	5										
CRITICAL LOAD COMBINATIONS:																						
Shear : LC \#8 = D+.7E, V max $=2957, \mathrm{v}$ design* $=2957 \mathrm{lbs}$																						
$\mathrm{D}=$ dead $\mathrm{L}=1 \mathrm{live} \mathrm{S}=$ snow $=$ wind $\mathrm{I}=1$ mpact Lr=roofAll LC's are listed in the Analysis output																						
Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS:																						
CALCULATIONS:																						
"Live" deflection $=$ Deflection from all non-dead loads (live, wind, snow..)																						
Total De	flecti	1.	(Dead	Load	Deflect	ion) +	Live	oad Def	flecti													

Design Notes:

. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement
2. Please verify that the default deflection limits are appropriate for your application.
3. Glulam design values are for materials conforming to ANSI $117-2015$ and manufactured in accordance with ANSI A190.1-2012
3. GLuLAMM bxd $=$ actual breadth x actual depth.
4. GLULam
Geat
5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
6. GLULAM: bearing length based on smaller of Fcp(tension). Fccp(comp'n).

FF1

Glulam-Unbal., West Species, 24F-V4 DF, 3-1/8"x18" 12 laminations, $3-1 / 8^{\prime \prime}$ maximum width,
Supports: All - Timber-soff Bearm, D.Fir-L No. 2
Total length: 23.34^{\prime}; Clear span: 23 '; volume $=9.1$ cu.ft.
Lateral support: tope full, bottom= at supports;
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design
3. Please verify that the defautt deflection limits are appropriate for your application.
4. Glulam design values are for materiials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
5. GLULAM: bxd = actual breadth \times actual depth.
6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
7. GLULAM: bearing length based on smaller of $\mathrm{Fcp(tension)} \mathrm{} .\mathrm{Fcp}($ comp'n).

					FF2 Glulan-Bal. Weat Specins, 74 FNE DF, 5-1/2 $\times 25-1 Z^{2}$ Lumal 3ppot kot he ockive aik
Analjsis vs. Allowable Stress and Daflection unan hos zopls:					
Crinerico	$\frac{\text { apoly is Matue }}{\text { K }}$	-pesip latus	isis.	Ansly	
mation! ${ }^{\text {a }}$		$\mathrm{ra}^{\prime}=3854$	面:		
Sostingl-	to $=13 \mathrm{cas}$	t0 ${ }^{+}$- 2250		盐/70' $=1.51$	
matarior live	$0.15-4 / 991$	8.57 = 1/76			
Sant21. Sozal	0.36--21/393	5.6. $1 / 200$	4	3.28.	
Santil. Tote	1,32 = 1/1/32		is	0.86	

Additional Data:

$$
\begin{aligned}
& \omega 14 \times 48 \text { or Pu } \\
& M_{x+} / \Omega_{6}=19,6 \geq M_{\max }=96.6^{x^{\text {f. }}} \\
& \text { MAX RXN }=41^{k} \quad|11\rangle 5 \times 5+1 / 4 \quad \text { It } \\
& \left\{\begin{array}{l}
46^{\circ} \mathrm{pos} \quad q=1355 \mu \mathrm{~N} .
\end{array}\right.
\end{aligned}
$$

FF4
Glulam-Unbal., West Species, 24F-V4 DF, 5-1/2"x18"
12 laminations, $5-1 / 2^{\prime \prime}$ maximum width,
12 laminations, 5-1/2" maximum width,
Total length: 23.16^{\prime}; Clear span: $23^{\prime} ;$ volume $=15.9 \mathrm{cu} . \mathrm{ft}$.
Lateral support: top= full, bottom=at supports;
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=47$	$\mathrm{Fv}^{\prime}=265$	psi	$\mathrm{fv}^{\text {/Fv }}{ }^{\prime}=0.18$
Bending (+)	$\mathrm{fb}=825$	$\mathrm{Fb}^{\prime}=2267$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.36$
Live Defl'n	0.27 = <L/999	0.77 = L/360	in	0.35
Total Defl'n	$0.47=L / 588$	$1.15=\mathrm{L} / 240$	in	0.41

Additional Data:

FACTORS:	F/E	psi) CD	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	$\mathrm{Cn} * \mathrm{Cvr}$	
Fv'	265	1.00	1.00	1.00	-	-		-	1.00	1.00	1.00	2
Fb'+	2400	1.00	1.00	1.00	1.000	0.945	1.00	1.00	1.00	1.00	-	2
Fcp ${ }^{\prime}$	650	-	1.00	1.00	-	-	-	-	1.00	-	-	
E'	1.8	million	1.00	1.00	-	-	-	-	1.00	-	-	2
Eminy '	0.85	million	1.00	1.00	-	-	-	-	1.00	-	-	2
CRITICAL LOAD COMBINATIONS:												
ShearBending (+) :LCLC \#2												
Deflection: LC \#2 = D+L (live)												
All LC's are listed in the Analysis outputLoad combinations: ASCE 7-10/ IBC 2015												
CALCULATIONS:												
Deflecti	on:	I =	11 e 06	b-in2								

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
4. GLULAM: bxd $=$ actual breadth \times actual depth.
5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
6. GLULAM: bearing length based on smaller of $\operatorname{Fcp}($ tension $)$, $\mathrm{Fcp}(\mathrm{comp}$ ' n$)$.

FF5
Glulam-Bal., West Species, 24F-V8 DF, 5-1/2"x12"
8laminations, $5-1 / 1$ " $^{\text {m maximum width, }}$
Supports: All - Timber-soft Beam, D. Fir-L No. 2
Total length: 21.12 '; Clear span: $6.333^{\prime}, 14.5^{\prime} ;$ volume $=9.7$ cu.ft
Lateral support: top $=$ full bottom $=$ at suppots;
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

riter	Analysis Value	Design Valu	Unit	Analysis/Design
Shear	$\mathrm{fv}^{\mathrm{fy}}=91$	Fv^{\prime}, $=265$	psi	${\mathrm{fv} / \mathrm{FV}^{\prime}}^{\text {d }}=0.34$
Bending (+)	$\mathrm{fb}_{\mathrm{fb}}=1164$	$\mathrm{Fb}^{\mathrm{Fb}}$ ' $=2400$	psi	$\mathrm{fb}_{\mathrm{fb} / \mathrm{Fb}} \mathrm{Fb}^{\prime}=0.48$
(ending (-)			psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.42$
Interior Live	$0.31=\mathrm{L} / 575$	$0.49=\mathrm{L} / 360$	in	0.63
${ }_{\text {Total }}$	$0.37=\mathrm{L} / 470$	$0.73=\mathrm{L} / 240$	in	0.51
til. Live	$0.42=\mathrm{L} / 182$	$0.43=\mathrm{L} / 180$	in	0.99

Additional Data:

Additional Data:												
FACTORS:		(psi) CD	cm	Ct	cL	cv	cfu	Cr	Cfrt	Notes	$\mathrm{Cn}^{*} \mathrm{Cvz}$	
Fv^{\prime}	265	51.00	1.00	1.00					1.00	1.00	1.00	
Fb'+	2400	1.00	1.00	1.00	1.000	1.000	1.00	1.00	1.00	1.00		6
Fb'-	2400	1.00	1.00	1.00	0.982	1.000	1.00	1.00	1.00	1.00	-	2
${ }^{\text {Fcp }}$ '	650		1.00	1.00					1.00			
${ }^{\text {E }}$	1.8	8 million	1.00	1.00					1.00			12
Eminy '	0.85	5 million	1.00	1.00	-		-		1.00	-	-	12
CRITICAL LOAD COMBINATIONS:												
Bending (-): LC \# $2=\mathrm{D}+\mathrm{L}, \mathrm{M}=1078 \mathrm{C}^{-1 \mathrm{lbs}-\mathrm{ft}}$												
Deflection: $\begin{aligned} & \text { LC \#12 } \\ & \text { LC \#12 }\end{aligned}=$ (${ }^{\text {(tive) }}$)												
$\mathrm{D}=$ dead $\mathrm{L}=1$ ive $\mathrm{S}=$ snow $\mathrm{W}=$ wind $\mathrm{I}=$ impact $\mathrm{Lr}=$ roof live $\mathrm{Lc}=$ concentrated $\mathrm{E}=$ earthquake												
Load com	binati	tions: AsC	E-10	/ IBC								
CALCULATIONS:												
Total Deflection $=1.50$ (Dead Load Deflection) + Live Load De												
teral	stabil	ility (-) :	$\mathrm{Lu}=$			eral stability (-): $\mathrm{Lu}=14.63$ Le $=24.06 \mathrm{RB}=10.7$; Lu based on full span						

Design Notes

WoodWorks analysis and desion are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. Please verify that the defautt deflection limits are appropriate for your application.
3. Glulam design values are for materials conforming to ANSI 1117-2015 and manufactured in accordance with ANSI A190.1-2012
4. Grades with equal bending capacity in the top and bottom edges of the beam crosss-section are recommended for continuous beams.
5. GLULAM: bxd $=$ actual breadth \times actual depth
G. Glulam Beams shall be laterally supported ac
. The critical deflection value has been determined using maximum back-span deflection. Cantilever deflections do not govern design.

							FF6 Oct. 18, 2019 13:02
Design Check Calculation Sheet WoodW orks Sizer 11.1							
Loads:							
Load	Type	Distribution	$\begin{array}{\|l\|} \hline \text { Pat- } \\ \text { tern } \\ \hline \end{array}$	$\begin{array}{cc} \begin{array}{c} \text { Location } \\ \text { St } \\ \text { Start } \end{array} \\ \hline \text { End } \end{array}$	$\begin{array}{\|l\|l\|} \hline \end{array}{ }^{\text {Magnitude }} \text { End }$	Unit	
$\begin{array}{\|l\|} \hline \text { Load1 } \\ \text { Load2 } \\ \text { Self-weight } \end{array}$	(ead	Fu11 Area Fu11 Area Full ODL	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$		$\begin{gathered} 15.00\left(16.50^{\circ}\right) \\ 40.00\left(16.50^{\prime}\right) \\ 7.7 \end{gathered}$	$\begin{array}{\|c} \hline \text { psf } \\ \text { psf } \\ \text { plf } \end{array}$	

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in)

Maximum reaction on at least one support is from a different load combination than the critical one for bearing design, shown here, due to Kd factor. See Analysis results for reaction from critical load combination.

Additional Data

Actors:	F/E (p)	psi) CD	см	ct	CL	CF	Cfu	Cr	Cfrt	Ci		
Fv'	180	1.00	1.00	1.00					1.00	1.00	1.00	15
Fb'+	900	1.00	1.00	1.00	0.992	1.200	1.00	1.00	1.00	1.00		
$\mathrm{Fb}^{\prime}-$	900	1.00	1.00	1.00	0.992	1.200	1.00	1.00	1.00	1.00	-	
Fcp	625		1.00	1.00					1.	1.		
E^{\prime}	1.6 m	mi11ion	1.00	1.00					1.00	1.00		
Emin'	0.58 m	million	1.00	1.00		-			1.00	1.0	-	
CRITICAL LOAD COMBINATIONS:												
Load con	binatio	ons: AsC	E 7-10	/ IBC								
CALCULATIONS:												
Deflection: $E I=369006 \mathrm{lb-in} 2$												
ve" deflection = Deflection from all non-dead loads												
Lateral			Lu $=$									

Design Notes:

Pood
3. Continuous or Cantilevered Beams: NDS Clause 4.2 .5 .5 requires that normal grading provisions be extended to the middle $2 / 3$ of 2 span beams and to the full length of cantilevers and other spans.
4. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.
5. The critical deflection value has been determined using maximum back-span deflection. Cantilever deflections do not govern design.

FF7

LVL n-ply, 1.8E, 2600Fb, 1-3/4"x11-7/8", 1-ply
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Floor joist spaced at $16^{\prime \prime} \mathrm{c} / \mathrm{c}$; Total length: 13.47^{\prime}; Clear span: 13.367^{\prime}; volume $=1.9 \mathrm{cu} . \mathrm{ft}$,
Lateral support: top= full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help);

Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=44$	$\mathrm{Fv}^{\prime}=285$	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.15$
Bending (+)	$\mathrm{fb}=696$	$\mathrm{Fb}^{\prime}=2707$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.26$
Live Defl'n	$0.15=<L / 999$	$0.45=\mathrm{L} / 360$	in	0.33
Total Defl'n	$0.21=\mathrm{L} / 752$	$0.67=\mathrm{L} / 240$	in	0.32

Additional Data:

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. System factor KH may not apply to field-assembled multi-ply beams.
4. FIRE RATING: Joists, wall studs, and multi-ply members are not rated for fire endurance

B1
Lumber-soft, D.Fir-L, No.2, 4x10 (3-1/2"x9-1/4") Supports: All - Timber-soft Beam, D.Fir-L No. 2
Total length: 15.05'; Clear span: $4.909,4.871,4.909$; volume $=3.4$ cu.ft.
Lateral support: top= at all supports, bottom= at all supports;
Analysis vs. Allowable Stress and Deflection using NDS 2015 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=66$	$\mathrm{Fv}^{\prime}=180$	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.37$
Bending (+)	$\mathrm{fb}=366$	$\mathrm{Fb}^{\prime}=1071$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.34$
Bending (-)	$\mathrm{fb}=431$	$\mathrm{Fb}^{\prime}=1071$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.40$
Live Defl'n	$0.01=<L / 999$	$0.17=\mathrm{L} / 360$	in	0.08
Total Defl'n	$0.02=<L / 999$	$0.25=\mathrm{L} / 240$	in	0.08

Additional Data:

FA	F/E) CD	CM	Ct	CL	CF	fu	Cr	Cfrt	Ci	Cn	LC\#
Fv'	180	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00	5
Fb'+	900	1.00	1.00	1.00	0.992	1.200	1.00	1.00	1.00	1.00		7
Fb'-	900	1.00	1.00	1.00	0.992	1.200	1.00	1.00	1.00	1.00	-	5
Fcp ${ }^{\prime}$	625	-	1.00	1.00	-	-			1.00	1.00	-	
E^{\prime}	1.6	llion	1.00	1.00	-	-	-		1.00	1.00		7
Emin'	0.58	llion	1.00	1.00	-	-	-		1.00	1.00	-	7
CRITICAL LOAD COMBINATIONS:												
Shear : LC \#5 = D+L (pattern: LL_), V $\mathrm{max}=1959, \mathrm{~V}$ design $=1428 \mathrm{lbs}$												
Bending (-) : LC \#5 = D+L (pattern: LI_), $M=1792 \mathrm{lbs}-\mathrm{ft}$												
Deflection: $\begin{aligned} \text { LC \#7 } & =\text { (live) } \\ \text { LC \#7 } & =\text { (total) }\end{aligned}$												
$\mathrm{D}=$ dead $\mathrm{L}=1 \mathrm{l}$ ve $\mathrm{S}=$ snow $\mathrm{W}=$ wind $\mathrm{I}=$ impact $\mathrm{Lr}=$ roof live $\mathrm{LC}=$ concentrated E=earthquake												
All LC's are listed in the Analysis output												
CALCULATIONS:												
Deflection: EI $=369 \mathrm{e} 06 \mathrm{lb}$-in2												
"Live" deflection = Deflection from all non-dead loads (live, wind, snow...)												
Total Deflection $=1.50$ (Dead Load Deflection) + Live Load Deflection. Lateral stability $(+): \quad \mathrm{Lu}=5.00^{\prime} \mathrm{Le}=10.31^{\prime} \quad \mathrm{RB}=9.7$; Lu based on full												
Lateral stability (-): $\mathrm{Lu}=5.00^{\prime} \mathrm{Le}=10.31, \quad \mathrm{RB}=9.7$; Lu based on full sp												

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Continuous or Cantilevered Beams: NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle $2 / 3$ of 2 span beams and to the full length of cantilevers and other spans.
4. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01		
License: KW-06061509		
License To : Phillips Structural Engineering	Cantilevered Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13

License To:Philips Structural Engineering

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.102 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01		
License: KW-06061509		
License To: Phillips Structural Engineering	Cantilevered Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13

,

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.103 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile
RetainPro (c) 1987-2017, Build 11.17.11.01 Cantilevered Retaining Wall
License: KW-06061509
License To: Phillips Structural Engineering

Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) $250.0 \quad$ pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

Item		$\begin{aligned} & \text { Force...OVE } \\ & \text { lbs } \end{aligned}$	ERTURNIN Distance ft	$\underset{\mathrm{ft}-\#}{\text { Moment }}$			Force lbs	$\begin{gathered} \text { SSTING..... } \\ \text { Distance } \\ \mathrm{ft} \end{gathered}$	Moment $\mathrm{ft}-\#$	
Heel Active Pressure	$=$	1,417.5	3.00	4,252.5	Soil Over Heel	=	3,962.9	3.67	14,537.4	
Surcharge over Heel	=				Sloped Soil Over Heel	=				
Surcharge Over Toe	$=$				Surcharge Over Heel	$=$				
Adjacent Footing Load	=				Adjacent Footing Load	$=$				
Added Lateral Load	$=$				Axial Dead Load on Stem		360.0	1.08	390.0	
Load @ Stem Above Soil					* Axial Live Load on Stem	=	720.0	1.08	780.0	
Seismic Earth Load	$=$	396.9	4.50	1,786.1	Soil Over Toe	=				
	=				Surcharge Over Toe	=				
Total	1,814.4		O.T.M.	6,038.6	Stem Weight(s)	=	900.0	1.08	975.0	
			Earth @ Stem Transitions=							
			Footing Weight		$=$	888.0	2.96	2,628.5		
Resisting/Overturning Ratio				$=3.07$		Key Weight	=			
Vertical Loads used for Soil Pressure $=$				6,830.9 lbs		Vert. Component	$=$			
							6,110.9	R.M. $=$	18,530.8	
If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201					* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.					
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.										

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile
RetainPro (c) 1987-2017, Build 11.17.11.01 Cantilevered Retaining Wall
License: KW-06061509
License To: Phillips Structural Engineering

Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) $250.0 \quad$ pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile
RetainPro (c) 1987-2017, Build 11.17.11.01 Cantilevered Retaining Wall
License: KW-06061509
License To: Phillips Structural Engineering

Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) $250.0 \quad$ pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01 License: KW-06061509, License To : Phillips Structural Engineering	Cantilevered Retaining Wall
Tilt	
Horizontal Deflection at Top of Wall due to settlement of soil	
(Deflection due to wall bending not considered)	
Soil Spring Reaction Modulus	250.0 pci
Horizontal Defl @ Top of Wall (approximate only)) 0.115 in
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,	
because the wall would then tend to rotate into the	he retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Cantilevered Retaining Wall

Code: IBC 2015,ACI 318-14,ACI 530-13
License : KW-06061509
License To : Phillips Structural Engineering

Vertical Reinforcing Horizontal Reinforcing
$0.0969 \mathrm{in} 2 / \mathrm{ft} \quad$ Min Stem T\&S Reinf Area 1.152 in2
$0.25 \mathrm{in} 2 / \mathrm{ft} \quad$ Min Stem T\&S Reinf Area per ft of stem Height : $0.192 \mathrm{in} 2 / \mathrm{ft}$
$0.1344 \mathrm{in} 2 / \mathrm{ft} \quad$ Horizontal Reinforcing Options :
One layer of : Two layers of :
$0.1344 \mathrm{in2} / \mathrm{ft}$ \#4@ 12.50 in \#4@ 25.00 in
0.15 in2/ft \#5@ 19.38 in \#5@ 38.75 in
0.8467 in2/ft \#6@ 27.50 in \#6@ 55.00 in

Footing Design Results			Heel
		Toe	
Factored Pressure	=	2,463	159 psf
Mu' : Upward	=	1,839	$77 \mathrm{ft-} \mathrm{\#}$
Mu' : Downward	=	203	196 ft -\#
Mu: Design	=	1,636	119 ft -\#
Actual 1-Way Shear	=	12.59	2.72 psi
Allow 1-Way Shear	=	40.00	40.00 psi
Toe Reinforcing		None Spec'd	
Heel Reinforcing		None Spec'd	
Key Reinforcing		None Spec'd	
Other Acceptable Sizes \& Spacings			

Toe: Not req'd: $M u$ < phi* $^{*} 5^{*}$ lambda*sqrt(f'c)* ${ }^{*} S m$
Heel: Not req'd: $M u$ phi*5 ${ }^{*}$ lambda* ${ }^{*}$ sqrt(f'c $)^{*} S m$
Key: No key defined
Min footing T\&S reinf Area 0.63 in2
Min footing T\&S reinf Area per foot 0.24 in2 ft
If one layer of horizontal bars: If two layers of horizontal bars:
\#4@ 10.10 in
\#4@ 20.20 in
\#5@ 15.66 in
\#5@ 31.31 in
\#6@ 22.22 in

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509, Cantilevered Retaining Wall
License To: Phillips Structural Engineering
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01 License : KW-06061509 License To: Phillips Structural Engineering	Cantilevered Retaining Wall
Tilt	
Horizontal Deflection at Top of Wall due to settlement of soil	
(Deflection due to wall bending not considered)	
Soil Spring Reaction Modulus	250.0 pci
Horizontal Defl @ Top of Wall (approximate only)) 0.104 in
because the wall would then tend to rotate into the retained soil.	

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509
License To: Phillips Structural Engineering \quad Cantilevered Retaining Wall
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509
License To: Phillips Structural Engineering \quad Cantilevered Retaining Wall
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509
License To: Phillips Structural Engineering \quad Cantilevered Retaining Wall
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS $2015 \backslash P B$ Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509, Cantilevered Retaining Wall
License To: Phillips Structural Engineering
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509
License To: Phillips Structural Engineering \quad Cantilevered Retaining Wall
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile
RetainPro (c) 1987-2017, Build 11.17.11.01 Cantilevered Retaining Wall
License: KW-06061509
License To: Phillips Structural Engineering

Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) $250.0 \quad$ pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509
License To: Phillips Structural Engineering \quad Cantilevered Retaining Wall
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile
RetainPro (c) 1987-2017, Build 11.17.11.01 Cantilevered Retaining Wall
License: KW-06061509
License To: Phillips Structural Engineering

Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) $250.0 \quad$ pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509
License To: Phillips Structural Engineering \quad Cantilevered Retaining Wall
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

Summary of Overturning \& Resisting Forces \& Moments

This Wall in File: Q:\0-PROJECTS\2015\PB Architectural\Wen Hu Residence\Retaining Wall Calcs\cantile

RetainPro (c) 1987-2017, Build 11.17.11.01
License: KW-06061509
License To: Phillips Structural Engineering \quad Cantilevered Retaining Wall
Tilt
Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)
Soil Spring Reaction Modulus
Horizontal Defl @ Top of Wall (approximate only) 250.0 pci
The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

